## Exercise 300

The demand $D$ (in millions of barrels) for oil in an oil-rich country is given by the function $D(p)=150 \cdot(2.7)^{-0.25 p}$, where $p$ is the price (in dollars) of a barrel of oil. Find the amount of oil demanded (to the nearest million barrels) when the price is between $\$ 15$ and $\$ 20$.

## Solution

Plug in $p=15$ and $p=20$ and use a calculator.

$$
\begin{aligned}
& D(15)=150 \cdot 2.7^{-0.25(15)} \approx 3.61807 \\
& D(20)=150 \cdot 2.7^{-0.25(20)} \approx 1.04538
\end{aligned}
$$

Therefore, if the price is between $\$ 15$ and $\$ 20$, then the demand is between one and four million barrels.

